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Abstract

The purpose of this work is to study the effects of inhaled heat transport dynamics
in human trachea. The result might help us better understanding the development of
burn taking place in the human trachea exposed to various fire situations. To mini-
mize lung injury when exposed to a fire or natural disaster, the time for first degree
burns to occur is also theoretically predicted. Further, we studied the effect of heat of
air region and tissue region, burning evaluation of inhalation of hot air in the human
trachea under various fire situations.

1 INTRODUCTION

A study of the heat transfer mechanism of the human respiratory tract helps assess any
heat, smoke and fire related injury affecting the human respiratory tract. The design
of respiratory systems used by people working in extreme environments, like fire fighters
exposed to forest fire, chemical and biological exposure or hazardous material exposure
can be better improved by comprehensive study of the thermal profile. This can help in
better occupational health and safety in the case of fire fighters and emergency responders.
These emergency responders are exposed to extreme temperatures and do have protection
equipments like a respirator for oxygen supply, but still the inhaled air is heated because
of the extreme temperature in the surrounding atmosphere.

C. P. Yu and C. K. Diu (1983) have presented the total and regional deposition of
inhaled aerosols in humans. C. Kleinstreuer and Z. Zhang (2008) have studied the airflow
and particle transport in the human respiratory system. Raju et al., (2014) have discussed
the radiation absorption effect on MHD free convection heat and mass transfer flow of
viscoelastic fluid through porous medium bounded by an oscillating plate in slip flow
regime with constant section. J.S. Guy and M.D. Peck (1999) have studied the smoke
inhalation injury: pulmonary implications. J. Liu and C. Wang (1997) have discussed the
bioheat transfer.

The airway can be idealized as a long, right circular cylinder. The tissue temperatures
are considered as continuous functions of axial (z) and radial (r) positions and time (t),
while the air temperatures are only the continuous functions of axial position (z) and time
(t), based on the well known Pennes bioheat transfer equation.
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Figure 1: Schematic model for the respiratory tract(idealized trachea)

For the tissue area, the resulting equation is as follows:
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where α = K
ρC is the diffusivity of tissue, ρ, C, K are, respectively, the density, specific

heat and thermal conductivity of the tissue; Cb denote specific heat of blood; Wb the blood
perfusion; Ta the supplying arterial blood temperature which is treated as a constant, and
T the tissue temperature, and Qm the metabolic heat generation rate.

During a real thermal process, the boundary condition (BC) at the tract skin surface
is often time-dependent. At this mucous-air interface (r=a), the generalized composed of
two parts, i.e., convection and evaporation. At the entrance of the nasal cavity (z=0),
the continuity of the perpendicular heat flux has been imposed as a convective boundary
condition.
Boundary Conditions are

• K ∂T
∂r = hf (T − TA) +

Hm(P ∗sk−QP
∗
a )

1000 , at r=a interface

• ∂T
∂r = 0, at r=b, symmetry

• K ∂T
∂z = h

′
f (T − Tf ) at z = 0

• ∂T
∂z = 0, at z = L

• Initial condition: T = T0 at t=0

where T0 is steady-state temperature field, which is assumed as the uniform value Ta, Tf
the surrounding hot air temperature, h

′
f the apparent heat convection coefficient between
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the tissue and the surrounding air and hf the heat convection coefficient between the
mcousal surface and the following air stream, ϕ the relative humidity of surrounding air,
H the latent heat of water vapour, m is water penetrative coefficient in mucosal surface,
p∗a the saturated vapour pressure at surrounding air temperature and p∗sk is the saturated
vapour pressure at tissue temperature.
Using dimensionless quantities

χT =
T − Tf
Ta − Tf

; ζ =
z

L
; ξ =

r

rw
; τ = 2πft

The boundary conditions are,

(i) ∂χT
∂τ =

rwhf
K χT + hfχA

rw
K + 2hfTf

rw
K

Ta−Tf
Ta−T + C7rw

K(Ta−Tf ) at ξ = 1

(ii) ∂χT
∂ξ = 0 at ξ = 0.95

(iii) ∂χT
∂ζ = L

Kh
′
fχT at ζ = 0

(iv) ∂χT
∂ζ = 0 at ζ = 1

(v) χT = 1 at τ = 0

Using the dimensionless quantities in the equations (1), we get,
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where

C1 =
WbCbTa
K

; C2 =

(
WbCb
K

)
(Ta − Tf ); C3 =

WbCbTa
K(Ta − Tf )2πf

;

C4 =

(
WbCb
K

)(
1

2πf

)
; C5 =

TfWbCb
(Ta − Tf )2πfK

; C6 =
1

L2(Ta − Tf )2πf

The energy balance equation for the air region can be written as,

∂TA
∂t

= −V (t, z)
∂TA
∂z

+
P (z)

ρACAA(z)
[hf (Tt − TA) + l1] (3)

Boundary conditions are

• During Inspiration: TA = Tf at z=0
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• During Expiration: ∂TA
∂z = 0 at z=L

Initial conditions are
The burn process is modeled using the following Initial condition

• TA = TA0 at t=0

To calculate the transient air temperature field, the initial air temperature distribution
TA0 before inhalation injury needs to be known. It can be obtained by solving equation
(3) with the following boundary conditions:

• TA0 = Tf0 at z=0

in which Tf0 is the initial surrounding air temperature.
Dimensionless quantities

χA =
T − Tf
Ta − Tf

; ζ =
z

L
; ξ =

r

rw
; τ = 2πft

using the above dimensionless quantities the boundary conditions are,

(vi) χA = 0 at ζ = 0

(vii) ∂χA
∂ζ = 0 at ζ = 1

(viii) χA = 1 at τ = 0

(ix) χA = 0 at ζ = 0

Using the dimensionless quantities in the equations (3), we get,

(Ta − Tf )2πf
∂χA
∂τ

= −V
A

[(
Ta − Tf

L

)
∂χA
∂ζ

]
+ l2 [hf [((Ta − Tf )χA + Tf )− TA] + l1]

∂χA
∂τ

= −V
A

1

L(2πf)

∂χA
∂ζ

+

(
l2hf
2πf

)
χA + l3 (4)

where

• V (t, z) = V
A = constant velocity,

where V is the local volumetric longitudinal air velocity and A is the local airway
cross-section.

• l2 = P (z)
ρACAA(z)

• l3 =
l2(l1−hfTA)
2πf(Ta−Tf )

The dimensionless form of tissue region (2) can be written as,

1

α

∂χT
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=
1

r2w2πf
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ξ
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∂ξ

+
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2 Mehtod of Solution

1

α

∂χT
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=
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ξ
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+
∂2χT
∂ξ2

]
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Apply Hankel on the above equation we get,

1

α

[∫ 1

0.95
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1
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∫ 1
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J1(P )

P
− C4χ̃T + C6
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1

α

∂χ̃T
∂τ

= C8[J1(P )100P − J1(Pβ)(100Pβ)− P 2χ̃T + (C3 + C5)
J1(P )

P
− C4χ̃T + C6

∂2χ̃T
∂ζ2

]

where

C8 =
1

r2w2πf

C6
∂2χ̃T
∂ζ2

− 1

C8α

∂χ̃T
∂τ
− (C4 + P 2)χ̃T = −J1(P )100P + J1(Pβ)(100Pβ)− (C3 + C5)

J1(P )

P
(5)

Apply Laplace transform on the equation (5), we get,∫ ∞
0

C6
∂2χ̃T
∂ζ2

e−sτdτ − 1

C8α
L

[
∂χ̃T
∂τ

]
− (C4 + P 2)

∫ ∞
0

χ̃T e
−sτdτ = C9

∫ ∞
0

e−sτdτ (6)

where

C9 = −[J1(P )100P − J1(Pβ)(100Pβ) + (C3 + C5)
J1(P )

P
]

Using initial condition (v) in equation (6) and simplifying we get,

C6
∂2 ˜̃χT
∂ζ2

− 1
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[s ˜̃χT ]− 1

αC8
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P
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s
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s
+

1
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[

1
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C4 + P 2
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]
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C6s
+

1
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P
(7)
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Solving the equation (7)and applying the boundary conditions (iii) and (iv), we get,

˜̃χT =

[
30Lh

′
f

K
√
c(e−(2

√
c) − 1)

e−2
√
c

]
eζ
√
c +

[
30Lh

′
f

K
√
c(e−(2

√
c) − 1)

]
e−ζ
√
c − D

C
(8)

where

C =

(
s

C6C8α
+

(C4 + P 2)

C6

)
D =

C9

C6s
+

1

C8C6α

J1(P )

P

Applying inverse Laplace transform on equation (8), we get,

χ̃T =
30L(h

′
f )

K


√

1
C6C8α

ζ

2
√
πτ3

[2e− ζ2

4C6C8ατ

]
− C9

C6
(9)

Applying inverse Hankel transform on equation (9), we get,
The temperature of tissue region in the human trachea is

χT = 2
i=5∑
i=1

(30L(h
′
f )

K

)
√

1
C6C8

ζ

2
√
πτ3

(2e
− ζ2

4C6C8ατ

)
− C9

C6

[ J0(Piε)
[J1(Pi)]2

]
(10)

The dimensionless quantities of energy balance equation (4), for the air region can be
written as,

∂χA
∂τ

= −V
A

1

(L2πf)

(
∂χA
∂ζ

)
+

(
l2hf
2πf

)
χA + l3 (11)

where V0 = V (t, z) = V/A = constant velocity

l2 =
P (z)

ρACAA(z)

l3 =
l2(l1 − hfTA)

2πf(Ta − Tf )

Applying Laplace transform in the equation (11), we get,

sχ̃A − 1 = − V

A(L2πf)

∂χ̃A
∂ζ

+
l2hf
2πf

χ̃A +
l3
s

V
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+

(
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χ̃A −

1
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V
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1

s
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(
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V

)
= 0
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+ l4χ̃A = l5 (12)
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where

l4 =
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s−

l2hf
2πf

)(
AL(2πf)

V

)
l5 =

1

s
(l3+s)

(
AL(2πf)

V

)
The required solution of equation (12) is

χ̃A =

[
l5
l4

+ Ce−l4ζ
]

χ̃A =

1
s (l3 + s)

(
AL(2πf)

V

)
(
s− l2hf

2πf

)(
AL(2πf)

V

) + Ce
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l2hf
2πf
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(
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V
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ζ
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l3
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s− l2hf
2πf

) + C
[
e−s(

AL2πf
V )ζ

] [
e

(
l2hfAL

V

)
ζ
]

(13)

Taking inverse Laplace transform in equation (13), we get,

L[χ̃A] = L−1

 l3
s + 1

(s− l2hf
2πf )

+ CL−1
[
e
−s

(
AL(2πf)

V

)
ζ
] [
e

(
l2hfAL

V

)
ζ
]

χA = L−1

 l3

s
(
s− l2hf

2πf
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+ L−1

 1

s− l2hf
2πf

+ Ce

(
l2hfAL

V
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ζ
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[
e

(
− sAL(2πf)

V
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ζ
]

by using the partial fraction, we get,

χA =L−1
[
− l32πf
l2hfs

]
+ L−1

 l32πf

l2hf

(
s− l2hf

2πf

)


+ L−1

 1(
s− l2hf

2πf

)
+ Ce

(
l2hfAL

V

)
ζ
L−1

[
e(
−sAL2πf

V )ζ
]

χA = −
(
l32πf

l2hf

)
+

[
1 +

l32πf

l2hf

]
e

(
l2hf
2πf

)
τ

+ Ce

(
l2hfAL

V

)
ζ
(1) (14)

Applying the boundary condition (ix) on the equation (14), we get,

χA = −l6 + e

(
l2hf τ

2πf

)
[1 + l6] +

[
l6 − e

(
l2hf τ

2πf

)
[1 + l6]

]
eζ (15)

7



where

l6 =
l32πf

l2hf

The temperature of air region of the human trachea is

χA =

[
l6 − e

(
l2hf τ

2πf

)
(1 + l6)

] [
eζ − 1

]
(16)

2.1 Burn Evaluation

F.C. Henriques and A.R. Moritz have proposed the quantitative burn degree evaluation
based on the tissue damage, can be represented as an integral of a chemical rate process.

Ω =

∫ 1

0
Pe(−

∆E
RT )dt (17)

where P is a constant that varies with tissue and local temperature, ∆E and R are the
activation energy and ideal gas constant.

If both the conditions T > 44oC and Ω > 0.53 are satisfied at the entrance of the human
trachea (z = 0), then it is defined as the first degree burn. Figure 7.11 is the dimensionless
Henriques burn integral distribution at the surface of the tissue [0.65cm < r ≤ 3.65cm]
during fire. Obviously, due to the surface water evaporation cooling, the burn injury often
occurs at certain position underneath the skin surface near the inlet of the trachea.

Most of the tissues near the surface suffer injury immediately after the exposure, while
in the deeper tissues, serious damage occurs after a relatively longer time period.

The effect of relative humidity of surrounding air can be ignored in predicting burns
for short duration exposures. Further, burn times are predicted based on the classical
evaluation criterior.

3 Results and Discussions

The governing equations are solved by analytical method by using Hankel transform and
Laplace transform. Blood perfusion, thermal conductivity and heat capacity are assumed
to be constant in the temperature responses of tissues and air region of the human trachea.
In normal respiration, the air is taken in through the nostrils without making any special
effort, and sound or exaggerated movement of the nose or chest. Breathing is a cyclic
phenomenon.

The results might help us better understand the development of burn taking place
in the respiratory trachea exposed to various fire situations. Figures 2 and 3 give the
transient temperature distribution in tissue and air after the exposure. Clearly, the surface
tissue temperature decreases immediately after the exposure, while in the deeper tissues,
the temperature decreases slightly until after a longer period of time. Thermal injury
occurs on exposed external surfaces of nose and mouth; burns below the trachea are
nearly not encountered due to the efficiency of the upper airway in absorbing the heat.
Figure 2 shows that, no obvious temperature fluctuations throughout the inspiratory and
expiratory phases of the breathing cycle. The reason can be attributed to the high air
speed and thermal capacity of tissue. Another reason lies in that, thermal capacity of
the tissue is much higher than that of the air. However, this small fluctuation can be
seen clearly in Figure 4 to Figure 7. Due to heat loss to the tissue, the air temperature
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decreases acutely from the inlet of respiratory tract to the outlet during an inspiration
phase. However, the air temperature remains almost the same over the expiration stage
(Figure 3). The temperature of the inspired air is decreased to that near the body core
temperature (370C). Thus, almost no heat exchange occurs during expiration.

In order to show the tissue temperature fluctuation clearly, transient tissue tempera-
ture responses at two specific positions z=8cm, r=0.635cm and z=12cm, r=0.635cm are
particularly given in Figures 4, 5, 6 and 7. One can see that the higher amplitude of
the temperature oscillation occurs at the position near the inlet of the respiratory tract.
Figures 8 give out the transient air temperature responses at the two sections z=8cm and
z=12cm. The oscillations are much larger than that of the tissue temperature due to low
thermal capacity of the air. In the inlet of the human trachea, the air temperature is
mainly influenced by the surrounding air. Thus, the highest temperature almost does not
change during inspiration. However, the influence of the surrounding air will become weak
near the outlet of the respiratory tract where the highest and the lowest air temperature
both gradually increase with the increase of time.

Figure 2: Transient tissue temperature distribution ψT with τ during a fire for different
values of z (K=0.5, Wb=0.5, Qm=420, Tf=100, V=300, ϕ=0.3, T ∗=3)
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Figure 3: Transient air temperature distribution ψA with radial position η during a fire
for different values of τ(K=0.5,Wb=0.5, Qm=420, Tf=100, V=300, ϕ=0.3, T ∗=3)
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Figure 4: Transient tissue temperature ψT responses at specific position z=8( r=0.635,
K=0.5, Wb=0.5,Qm=420, Tf=100, V=300, ϕ=0.3, T ∗=3)

Figure 5: Transient tissue temperature ψT responses at section z = 12 ( r=0.635, K=0.5,
Wb=0.5, Qm=420, Tf=100, V=300, ϕ=0.3, T ∗=3)
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Figure 6: Transient air temperature ψA responses at section z = 8 (K=0.5, Wb=0.5,
Qm=420, Tf=100, V=300, ϕ=0.3, T ∗=3)

Figure 7: Transient air temperature ψA responses at section z = 12 (K=0.5, Wb=0.5,
Qm=420, Tf=100, V=300, ϕ=0.3, T ∗=3)
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Figure 8: Time prediction of the first-degree burn at the surface of tissue of the trachea
during a fire( z=0, K=0.5, Wb=0.5, Qm=420, Tf=100, V=300, ϕ=0.3, T ∗=3)

4 Conclusion

In this paper, we have developed the effects of inhaled heat transport in human trachea.
The problem is solved analytically and the results are represented graphically in Figures
1 to 8 by using Matlab software 9 version.

A transient two-dimensional mathematical model for heat transport across the respi-
ratory tract of human body was established and applied to predict the thermal impact of
inhaled hot gas to the nasal tissues during the early stage of fires. A transient theoretical
model was established to describe local heat transport, and quantify the burn degree along
the airway during the fires. The results might help us better understand the development
of burn taking place in trachea exposed to various fire situations. To minimize lung injury
when exposed to a fire or natural disaster, the time for the first-degree burns to occur is
also theoretically predicted. Most of the tissues near the surface suffer injury immediately
after exposure to fire, while in the deeper tissues, serious damage occurs after a relatively
longer time period. The method presented a valuable approach to theoretically evaluate
the injury of hot air to the human trachea under various fire situations. The effect of tran-
sient tissue temperature and air temperature for different positions, thermal conducting
and burn with first-degree at the surface of tissue of trachea is studied. Burn evaluation
was performed using the classical Henrique’s model to predict the time for thermal injury
to occur.
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